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Abstract
Hyperbolic formulations of the equations of motion are essential technique for prov-
ing the well-posedness of the Cauchy problem of a system, and are also helpful for
implementing stable long time evolution in numerical applications. We, here, present
three kinds of hyperbolic systems in the Ashtekar formulation of general relativity
for Lorentzian vacuum spacetime. We exhibit several (I) weakly hyperbolic, (II)
diagonalizable hyperbolic, and (III) symmetric hyperbolic systems, with each their
eigenvalues, and discuss how gauge conditions and reality conditions are constrained
toward constructing a symmetric hyperbolic system. As an application of this for-
mulation, we present a set of dynamical equations which forces the space-time to
evolve to the manifold that satis�es the constraint equations or the reality conditions
or both as the attractor against perturbative errors. The obtained systems may be
useful for future numerical studies using Ashtekar's variables. Several current works
are also described.

1 Introduction

1.1 Hyperbolic formulations in General Relativity

Developing hyperbolic formulations of the Einstein equation is growing into an important research areas in general
relativity (see e.g. [1]). These formulations are used in the analytic proof of the existence, uniqueness and stability
(well-posedness) of the solutions of the Einstein equation [2]. So far, several �rst order hyperbolic formulations
have been proposed; some of them are 
ux conservative [3, 4], some of them are symmetrizable or symmetric
hyperbolic systems [5, 6, 7, 8]. The recent interest in hyperbolic formulations arises from their application to
numerical relativity. One of the most useful features is the existence of characteristic speeds in hyperbolic systems.
We expect more stable evolutions and expect improved boundary conditions in their numerical simulation. Some
numerical tests have been reported along this direction [9, 10]. It might be worth remarking that the standard
Arnowitt-Deser-Misner (ADM) formulation cannot be a �rst-order hyperbolic form, since there are curvature
terms in the r.h.s. of dynamical equations.

For the reader's convenience, we provide our de�nitions of hyperbolic systems here.

De�nition 1 We assume a certain set of (complex) variables u� (� = 1; � � � ; n) forms a �rst-order (quasi-linear)
partial di�erential equation system,

@tu� = J l��(u) @lu� +K�(u); (1)

where J (the characteristic matrix) and K are functions of u but do not include any derivatives of u. We say
that the system (1) is:

(I). weakly hyperbolic, if all the eigenvalues of the characteristic matrix are real.

(II). diagonalizable hyperbolic, if the characteristic matrix is diagonalizable and has all real eigenvalues.

(III). symmetric hyperbolic, if the characteristic matrix is a Hermitian matrix.

We treat J l�� as a n�n matrix when the l-index is �xed. We say �l is an eigenvalue of J l�� when the characteristic
equation, det (J l�� � �l���) = 0, is satis�ed. The eigenvectors, p�, are given by solving J l�� p

l� = �lpl�.
These three classes have the relation (III) 2 (II) 2 (I). The symmetric hyperbolic system gives us the energy

integral inequalities, which are the primary tools for studying well-posedness of the system. As was discussed

yEmail: yoneda@mn.waseda.ac.jp
zEmail: shinkai@gravity.phys.psu.edu

1



by Geroch [11], most physical systems can be expressed as symmetric hyperbolic systems. In order to de�ne the
symmetric hyperbolic system, (III), we need to declare an inner product hujui to judge whether J l�� is Hermitian.
In other words, we are required to de�ne the way of lowering the index � of u�. We say J l�� is Hermitian with
respect to this index rule, when J l�� = �J l�� for every l, where the overhead bar denotes complex conjugate.

For more concrete descriptions for each systems, please refer our paper [12].

1.2 Ashtekar's formulations of General Relativity

Ashtekar's formulation of general relativity [13] has many advantages. By using his special pair of variables, the
constraint equations which appear in the theory become low-order polynomials, and the theory has the correct
form for gauge theoretical interpretation. These features suggest the possibility for developing a nonperturbative
quantum description of gravity. The detail equations are reviewed in Sec.2.

From the point of hyperbolicity of the system, Ashtekar's original set of equations of motion already forms a
weakly hyperbolic system, as we will show in x3. A symmetric hyperbolic formulation of Ashtekar's variables was
�rst developed by Iriondo, Leguizam�on and Reula (ILR) [14]. Unfortunately, in their �rst short paper [14], they
did not discuss the consistency of their system with the reality conditions, which are crucial in the study of the
Lorentzian dynamics using the Ashtekar variables. We considered this point in [15], and found that there are strict
reality constraints (alternatively they can be interpreted as gauge conditions). There are also another debates
between ILR's system and ours: on the de�nition of the symmetric hyperbolic systems and on the treatment of
the triad lapse freedom. These are described in [16] and [12].

As can been seen above, there is always a problem of reality conditions in applying Ashtekar formulation to
classical dynamics. Fortunately, it was shown that the secondary condition of the reality of the metric will be
automatically preserved during the evolution, if the initial data satis�es both primary and secondary metric reality
conditions [17]. If we impose the reality condition on the triad (triad reality condition), then we have additional
conditions that can be controlled by a part of a gauge variable, triad lapse Aa

0 (de�ned later) [18]. Therefore
the reality conditions are controllable, and we think that applying the Ashtekar formulation to dynamics is quite
attractive, and broadens our possibilities to attack dynamical issues. It is, however, also the case that preliminary
numerical simulations of the spacetime using Ashtekar's variables show that the system will not normally recover
real-valued spacetime if we relax the metric reality condition locally during the evolution [19]. Therefore, we
desire a system that is robust for controlling both the reality conditions and the constraint equations for stable
long-term integration. We present a new dynamical system to solve these problems in x4.

1.3 Short description of this report

In this report, we summarize our recent works [15, 12, 20], and comments on our current directions.
The �rst main results obtained are the several levels of hyperbolic formulations of Ashtekar's system. There

are two reasons to consider (I) weakly and (II) diagonalizable hyperbolic systems, rather than (III) symmetric
hyperbolic system. First, as we found in [15], the symmetric hyperbolic system we obtained has strict restrictions
on the gauge conditions, while the original Ashtekar equations constitute a weakly hyperbolic system. We are
interested in these di�erences, and show how additional constraints appear during the steps toward constructing
a symmetric hyperbolic system. Second, many numerical experiments show that there are several advantages if
we apply a certain form of hyperbolic formulation. Therefore, we think that presenting these three hyperbolic
systems is valuable to stimulate the studies in this �eld. To aid in possibly applying these systems in numerical
applications, we present characteristic speeds of each system we construct.

The second result is a proposal of a new dynamical systems, which is robust for the perturbative error for
violations of the constraint equations and the reality conditions. This is an extension of the idea by Brodbeck,
Frittelli, H�ubner and Reula (BFHR) [21] who constructed an asymptotically stable system (i.e., it approaches to
the constraint surface) for the Einstein equation. (A similar e�ort can be found also in [22].) BFHR introduced
additional dynamical variables, �s, which obey dissipative dynamical equations and which evolve the spacetime
to the constraint surface of general relativity as the attractor in the extended spacetime.

The layout of this paper is as follows: In x2, we brie
y review Ashtekar's formulation and the way of handling
reality conditions. In x3, we show several classes of hyperbolic system, including the construction of symmetric
hyperbolic system. In x4, we show a dynamical system which asymptotically evolves to constrained manifold.
Summary and discussion are in x5.

In this report, we discuss only the case of a vacuum spacetime, but including matter is straightforward.

2 Ashtekar formulation

We start by giving a brief review of the Ashtekar formulation and the way of handling reality conditions.
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2.1 Variables and Equations

The key feature of Ashtekar's formulation of general relativity [13] is the introduction of a self-dual connection
as one of the basic dynamical variables. Let us write the metric g�� using the tetrad EI

� as g�� = EI
�E

J
� �IJ

1).
De�ne its inverse, E�

I , by E�
I := EJ

� g
���IJ and we impose E0

a = 0 as the gauge condition. We de�ne SO(3,C)
self-dual and anti self-dual connections �Aa

� := !0a
� � (i=2)�abc !

bc
� ; where !

IJ
� is a spin connection 1-form (Ricci

connection), !IJ� := EI�r�E
J
� : Ashtekar's plan is to use only the self-dual part of the connection +Aa

� and to use
its spatial part +Aa

i as a dynamical variable. Hereafter, we simply denote +Aa
� as Aa

�.
The lapse function, N , and shift vector, N i, both of which we treat as real-valued functions, are expressed

as E�
0 = (1=N;�N i=N). This allows us to think of E�

0 as a normal vector �eld to � spanned by the condition
t = x0 =const., which plays the same role as that of ADM formulation. Ashtekar treated the set ( ~Ei

a, A
a
i ) as

basic dynamical variables, where ~Ei
a is an inverse of the densitized triad de�ned by ~Ei

a := eEi
a; where e := detEa

i

is a density. This pair forms the canonical set.
In the case of pure gravitational spacetime, the Hilbert action takes the form

S =

Z
d4x[(@tA

a
i ) ~E

i
a + (i=2)N

�

~Ei
a
~Ej

bF
c
ij�

ab
c � e2�N

�

�N iFa
ij
~Ej
a +Aa

0 Di
~Ei
a]; (2)

where N
�

:= e�1N , Fa
�� := 2@[�A

a
�]� i�abcA

b
�A

c
� is the curvature 2-form, � is the cosmological constant, Di

~Ej
a :=

@i ~E
j
a � i�ab

cAb
i
~Ej
c , and e2 = det ~Ei

a = (detEa
i )

2 is de�ned to be det ~Ei
a = (1=6)�abc �

�

ijk
~Ei
a
~Ej

b
~Ek
c , where �ijk :=

�abcE
a
i E

b
jE

c
k and �

�

ijk := e�1�ijk
2).

Varying the action with respect to the non-dynamical variables N
�

, N i and Aa
0 yields the constraint equations,

CH := (i=2)�abc ~Ei
a
~Ej

bF
c
ij ��det ~E � 0; (3)

CMi := �Fa
ij
~Ej
a � 0; (4)

CGa := Di
~Ei
a � 0: (5)

The equations of motion for the dynamical variables ( ~Ei
a and Aa

i ) are

@t ~E
i
a = �iDj(�

cb
aN
�

~Ej
c
~Ei
b) + 2Dj(N

[j ~Ei]
a ) + iAb

0�ab
c ~Ei

c; (6)

@tA
a
i = �i�abcN

�

~Ej

bF
c
ij +N jFa

ji +DiA
a
0 + �N

�

~Ea
i ; (7)

where DjX
ji
a := @jX

ji
a � i�ab

cAb
jX

ji
c ; for X

ij
a +Xji

a = 0.

2.2 Reality conditions

In order to construct the metric from the variables ( ~Ei
a;A

a
i ;N
�

;N i), we �rst prepare the tetrad E�

I as E�
0 =

(1=eN
�

;�N i=eN
�

) and E�
a = (0; ~Ei

a=e): Using them, we obtain the metric g�� such that g�� := E�
I E

�
J�

IJ :

This metric, in general, is not real-valued in the Ashtekar formulation. To ensure that the metric is real-valued,
we need to impose real lapse and shift vectors together with two metric reality conditions;

Im( ~Ei
a
~Eja) = 0; (8)

W ij := Re(�abc ~Ek
a
~E(i
b Dk

~Ej)
c ) = 0; (9)

where the latter comes from the secondary condition of reality of the metric Imf@t( ~Ei
a
~Eja)g = 0 [17], and we

assume det ~E > 0 (see [18]).
For later convenience, we also prepare stronger reality conditions, triad reality conditions. The primary and

secondary conditions are written respectively as

U i
a := Im( ~Ei

a) = 0; (10)

and Im(@t ~E
i
a) = 0: (11)

1)We use �; � = 0; � � � ; 3 and i; j = 1; � � � ; 3 as spacetime indices, while I; J = (0); � � � ; (3) and a; b = (1); � � � ; (3) are
SO(1;3), SO(3) indices respectively. We raise and lower �; �; � � � by g�� and g�� (the Lorentzian metric); I; J; � � � by
�IJ = diag(�1; 1;1; 1) and �IJ; i; j; � � � by 
ij and 
ij (the 3-metric); a; b; � � � by �ab and �ab. We also use volume forms
�abc: �abc�abc = 3!.

2)When (i; j; k) = (1;2;3), we have �ijk = e, �
�

ijk = 1, �ijk = e�1, and ~�ijk = 1.

3



Using the equations of motion of ~Ei
a, the gauge constraint (5), the metric reality conditions (8), (9) and the

primary condition (10), we see that (11) is equivalent to [18]

Re(Aa
0) = @i(N

�

) ~Eia + (1=2e)Eb
iN
�

~Eja@j ~E
i
b +N iRe(Aa

i ); (12)

or with un-densitized variables,
Re(Aa

0) = @i(N)Eia +N iRe(Aa
i ): (13)

From this expression we see that the secondary triad reality condition restricts the three components of the \triad
lapse" vector Aa

0. Therefore (12) is not a restriction on the dynamical variables ( ~Ei
a and Aa

i ) but on the slicing,
which we should impose on each hypersurface.

Throughout the discussion in this report, we assume that the initial data of ( ~Ei
a;A

a
i ) for evolution are solved

so as to satisfy all three constraint equations and the metric reality condition (8) and (9). Practically, this is
obtained, for example, by solving ADM constraints and by transforming a set of initial data to Ashtekar's notation.

3 Constructing hyperbolic systems

We have constructed several hyperbolic systems based on the Ashtekar formulation of general relativity, together
with discussions of the required gauge conditions and reality conditions. We summarize their features in Table 1.
For details, see [12].

system Eqs of reality gauge conditions �rst all real diagonal- sym.
motion condition required order eigenvals izable matrix

Ia original metric - yes yes no no

Ib original triad Aa
0 = Aa

iN
i, @iN = 0 yes yes no no

IIa original metric N l 6= 0; �N
p

ll (
ll 6= 0) yes yes yes no

IIb modi�ed metric Aa
0 = Aa

iN
i yes yes yes no

IIIa modi�ed triad Aa
0 = Aa

iN
i, @iN = 0 yes yes yes yes

Table 1: List of obtained hyperbolic systems. The system I, II and III denote weakly hyperbolic,

diagonalizable hyperbolic and symmetric hyperbolic systems, respectively.

For the later convenience, we show the explicit form of the system (IIIa). For a pair of u(D)
� = ( ~Ei

a;A
a
i ),

a symmetric hyperbolic system is obtained by modifying the right-hand-side of the dynamical equations using
appropriate combinations of the constraint equations. The modi�cation we made is to add terms to the original
evolution equation (6) and (7) as:

adding term to @t ~E
i
a = (N i�ab + iN

�

�ab
c ~Ei

c)C
b
G;

adding term to @tA
a
i = e�2N

�

~Ea
i CH � ie�2N

�

�abc ~Ebi ~E
j
cCMj:

Then the principal part of evolution equation becomes

@t

�
~Ei
a

Aa
i

�
�=

�
Al

a
bi
j 0

0 Dla
bi
j

�
@l

�
~Ej

b

Ab
j

�
;

where �= means that we have extracted only the terms which appear in the principal part of the system, and the
actual block diagonal components are

Alabij = i�abcN
�

~El
c


ij +N l
ij�ab; (14)

Dlabij = iN
�

(�abc ~Ej
c


li � �abc ~El
c


ji

�e�2 ~Eia�bcd ~Ej
c
~El
d � e�2�acd ~Ei

d
~El
c
~Ejb + e�2�acd ~Ei

d
~Ej
c
~Elb) +N l�ab
ij: (15)

The inner product of a set of the variables is

h( ~Ei
a;A

a
i )j( ~E

i
a;A

a
i )i = 
ij�

ab ~Ei
a
�~Ej
b + 
ij�abA

a
i
�Ab
j: (16)

We note that this symmetric hyperbolic system is obtained under the assumption of the triad reality condition,
together with gauge conditions, Aa

0 = Aa
iN

i and @iN = 0.
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4 Asymptotically constrained system

4.1 Propagations of constraints

Frittelli [23] showed that the propagation of the constraint equations in the standard ADM system of the Einstein
equation forms a symmetric hyperbolic system. This fact suggests that a small violation of the constraint equations
such as a truncation error in numerical simulation does not behave in a fatal way immediately.

Similarly, we can show the set of constraint equations (3), (4) and (5), forms a symmetric hyperbolic system
in its evolution equations. The principal part of the time derivatives of CH , ~CMi := eCMi and CGa become

@t

 
CH
~CMi

CGa

!
�=

0
BB@

N l �eN
�


li 0

�eN
�

�i
l N l�i

j + iN
�

~�lji 0

0 0 iN
�

�a
bc ~El

c +N l�a
b

1
CCA @l

 
CH
~CMj

CGb

!
; (17)

which forms a Hermitian matrix under the inner product rule of

h(CH ;CMi;CGa)j(CH;CMi;CGa)i := CH �CH + 
ijCMi
�CMj + �abCGa �CGb: (18)

We note that non-principal parts of the dynamical equations of a set of u(C)
� = (CH ; ~CM ;CG) include the terms

of u(D)
� and u

(C)
� . These facts suggest that all constraint equations have a well-posed feature. Iriondo et al [16]

present a similar result, but our de�nition of the inner product does not include any coe�cients. We also remark
that all other occurrences of the inner products throughout this report also do not include any coe�cients (i.e.,
obey the normal index notation). Thus we omit to express the inner product hereafter.

4.2 Asymptotically constrained system

Following the BFHR procedure [21], we next construct a dynamical system which evolves the spacetime to the
constrained surface, CH � CMi � CGa � 0 as the attractor. We introduce new variables (�; �i; �a), as they obey
the dissipative evolution equations

@t� = �1 CH � �1 �; (19)

@t�i = �2
~CMi � �2 �i; (20)

@t�a = �3 CGa � �3 �a; (21)

where �i 6= 0 (allowed to be complex numbers) and �i > 0 (real numbers) are constants.

If we take u(DL)� = ( ~Ei
a;A

a
i ; �; �i; �a) as a set of dynamical variables, then the principal part of (19)-(21) can

be written as

@t� �= �i�1�
bcd ~Ej

c
~El
d(@lA

b
j); (22)

@t�i �= �2[�e�
l
i
~Ej

b + e�ji
~El
b](@lA

b
j); (23)

@t�a �= �3@l ~E
l
a: (24)

The characteristic matrix of the system u
(DL)
� does not form a Hermitian matrix. However, if we modify

the right-hand-side of the evolution equation of ( ~Ei
a;A

a
i ), then the set becomes a symmetric hyperbolic system.

This is done by adding ��3

il(@l�a) to the equation of @t ~E

i
a, and by adding i��1�

a
c
d ~Ec

i
~El
d(@l�) + ��2(�e


lm ~Ea
i +

e�mi ~Ela)(@l�m) to the equation of @tA
a
i . The �nal principal part, then, is written as

@t

0
BB@

~Ei
a

Aa
i

�
�i
�a

1
CCA �=

0
BB@

Al
a
bi
m 0 0 0 ��3


il�a
b

0 Dla
ib
m i��1�

a
c
d ~Ec

i
~El
d ��2e(�

m
i
~Ela � 
lm ~Ea

i ) 0
0 �i�1�b

cd ~Em
c
~El
d 0 0 0

0 �2e(�
m
i
~El
b � �li ~E

m
b ) 0 0 0

�3�a
b�lm 0 0 0 0

1
CCA @l

0
BB@

~Em
b

Ab
m

�
�m
�b

1
CCA :

(25)
Clearly, the solution ( ~Ei

a;A
a
i ; �; �i; �a) = ( ~Ei

a;A
a
i ; 0; 0; 0) represents the original solution of the Ashtekar system.

If the �s decay to zero after the evolution, then the solution also describes the original solution of the Ashtekar
system in that stage. Since the dynamical system of u

(DL)
� , (25), constitutes a symmetric hyperbolic form, the

solutions to the �-system are unique. BFHR showed analytically that such a decay of �s can be seen for �s
su�ciently close to zero with a choice of appropriate combination of �s and �s, and that statement can be also
applied to our system. Therefore, the dynamical system, (25), is useful for stabilizing numerical simulations from
the point that it recovers the constraint surface automatically.
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4.3 Experiments of �-system using linearized equations

In order to show the system (25) evolves into asymptotically constrained manifold, we here demonstrate the
eigenvalues in the case of linearized system. This process is in accordance with the process of section 3 of [21].

The linearization, we mean, is obtained by truncating higher order deviations from the background (0th order)
spacetime, ( ~Ei

a;A
a
i ) = (�ia; 0). That is, we expand

~Ei
a = �ia +

(1)~Ei
a +

(2)~Ei
a + � � �

Aa
i = 0+(1)Aa

i +
(2)Aa

i + � � �

and take only up to the terms which has 1st order contributions. For example, 2-form curvature Fa
ij becomes

Fa
ij = @iAa

j � @jAa
i � i�abcAb

iA
c
j ' @i((1)Aa

j )� @j((1)Aa
i ).

Applying this linearization procedure to the evolution equations of CH ; ~CMi;CGa (and �s), we obtain

@tCH = �@k ~CMk + 2��1(@k@k�); (26)

@t ~CMi = �@iCH � i�ai
j(@a ~CMj) + ��2(@i@l�l) + ��2(@l@l�i); (27)

@tCGa = �i�jba@j ~CGb � 2 ~CMa + 2��1(@a�)� i��2�
alm(@l�m) + ��3(@i@i�a): (28)

Fourier transformation yields the equations for transformed variables (Ĉ; ~̂CMi; ĈGa; �̂; �̂i; �̂a),

@t ĈH = �ikm ~̂CMm � 2��1kmk
m�̂; (29)

@t ~̂CMi = �ikiĈH + kl�
l
i
m ~̂CMm � kik

m ��2 ~̂CMm � ��2kpk
p�mi�̂i; (30)

@tCGa = +�jbakj ĈGb � 2 ~̂CMi�
i
a + 2i��1ka�̂+ ��2�

almkl�̂m � ��3kmk
m�̂a; (31)

@t�̂ = �1 ĈH � �1 �̂; (32)

@t�̂i = �2
~̂CMi � �2 �̂i; (33)

@t�̂a = �3 ĈGa � �3 �̂a: (34)

We can show that the eigenvalues of this coe�cient matrix are all negative (real part), for certain pairs of �s
and �s. Such example can be obtained from a combination of �1 = �2 = �3 = 1, and �1 = �2 = �3 = 1 in one
dimensional situation k1 = 1; k2 = k3 = 0. This suggests that �-system, (25), works for decreasing the errors of
constraints.

5 Future issues

Up to the previous sections, we summarized our recent works. These are, (1) e�orts for constructing several
levels of hyperbolic formulations of Ashtekar's dynamical equations [15, 12], and (2) a proposal of a new set of
dynamical variables which force the spacetime evolution onto its constrained manifold asymptotically [20]. Here
as the concluding remarks of this report, we mention some current status of our future works together with these
backgrounds.

5.1 Relation between hyperbolic formulations and stabilities in numerics

First issue to concern is the relation between hyperbolic formulations and stabilities in numerical simulations. Up
to a couple of years ago, ADM decomposition was taken as the standard formulation for numerical relativists.
Di�culties in stable long-term evolutions were supposed to be solved by choosing proper gauge conditions and
boundary conditions.

As we mentioned in the introduction, one of the alternative approaches to ADM is to formulate Einstein
equations as they reveal hyperbolicity. Several numerical tests show nice properties than those by original ADM
(e.g. tests [4] of Bona-Mass�o's 
ux conservative form [3], tests [10] of Choquet-Bruhat and York (95)'s symmetriz-
able form [7]). It is worth remarking the following two points here. (i) These numerical tests were performed
using spherical symmetric spacetime. Therefore these advantages in full three-dimensional simulations are not
yet con�rmed. (ii) Both two hyperbolic formulations are not of �rst-order symmetric hyperbolic form. Therefore
a question arises: Is a symmetric hyperbolic form necessary for numerical relativity?

The recent studies can be checked from another direction. There are also several papers which mention that
the original ADM formulation is not the best one to be used. For example, a modi�ed ADM formulation that was
applied by Shibata and Nakamura (SN) [24] was shown to give us stable time evolutions than those of the original
ADM [25]. The propagation of the original ADM constraint equations obeys well-posed behavior [23] (and this
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fact can be applied also to SN's modi�ed version), but dynamical equations of both ADM and ADM-SN are not
a �rst-order hyperbolic formulation. Therefore another question arises: Will hyperbolic formulations really help
for numerical relativity?

Alcubierre et al [26] analyzed eigenvalues of both ADM and ADM-SN equations of their linearized version, and
found that ADM-SN does not have zero-eigenvalues in its characteristic matrix. They conjectured that non-zero
eigenvalues in the evolution system contribute stable long-term numerical evolution. This, we think, implies a
certain kind of hyperbolicity as a threshold for stable simulations.

In order to answer these questions, we are now preparing numerical tests using our three-levels of hyperbolic
equations based on the Ashtekar formulation. Such comparisons are suitable when the fundamental equations
cast on the similar interface, and that is available only in our formulations in any gravity theories at this moment.

5.2 Towards an initial boundary value problem

The second issue is a direction to understand the system as an initial boundary value problem (IBVP). All
the numerical simulations are of IBVP, that is we have to impose proper boundary conditions at the edges of
numerical region during the time evolution, together with data on initial hypersurface. In order not to pick up
unphysical re
ected information from the boundaries, several techniques (such as out-going wave conditions) are so
far developed. However, we have not yet obtained a \well-posed" boundary condition based on the mathematical
consideration.

The actual researches of IBVP in general relativity began only recently. A satisfactory theory of IBVP is only
available currently for linearized problems, and from this reason the base system is preferred to be a symmetric
hyperbolic form. Therefore the discussion is available only limited cases. As far as we know, there are only two
references on this topic: Stewart [27] studied IBVP for Frittelli and Reula's symmetric hyperbolic formulation
[8], and Friedrich and Nagy [28] for Friedrich's system [6]. Along to this IBVP, we are now trying to �nd out a
proper additional conditions for our symmetric hyperbolic formulation based on Ashtekar's variables.

5.3 Asymptotically constrained systems

In x4, we showed a set of dynamical equations, which has the constraint surface as its attractor, by introducing
new additional variables that obey dissipative equations of motion. Based on BFHR's analytical proof [21], we
expect that this set of equations is robust against a perturbative error of the constraint equations. Thus, the
system may be useful for future numerical studies with its stability property.

In [20], we also showed an advanced set of equations that has its attractor also in the real-valued surface.
Since our symmetric hyperbolic system of the original Ashtekar's variables requires the reality condition on the
triad, the new system is designed as such a way. The same above discussion can be applied to this advanced set,
and we expect the asymptotically real-valued feature in its evolution.

The problem of these systems might be that they require many additional variables. From a view point of
numerical applications, this claim would not be so serious a problem, as we see a success of a dissipative maximal
slicing condition [29] (`K-driver' in the literature). Actually, the �-system of the Einstein equations was already
tested and con�rmed to work appropriately in numerical applications at least in one dimensional space evolution
models [30]. Therefore we expect our system also shows the desired asymptotic behaviors. We are in preparation
of presenting such a numerical result. We are also trying to reduce the number of the variables in order to �nd
out clear geometrical meanings of our �-system. We will report these e�orts elsewhere.
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