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Outline

e Purpose: Which formulation is suitable for a simulation of Einstein equation?
e Strategyl: Hyperbolic reductions for Einstein equation.

e Strategy2: Constraint propagation analysis gives us an index of stability.

Plan of talks
1. Introduction
2. Hyperbolic reduction
3. Constraint propagation analysis
4. Adjusted systems

5. Summary



1 Introduction

(1) Why is a numerical simulation of Einstein equation necessary?

ds* = g datdz”  (u,v=0,1,2,3) metric on 4 dimensional Manifold
= (1/2)9"(0.9ps + 0pgvo — 9-9.p)  Christo el symbol (connection)
Ry, = 0,0, — 0,0, +17 17, —T7, " Riccl tensor (curvature)
T energy momentum tensor (stress tensor)
R, — (1/2)Rg,, + Ng, = 87T, Einstein equation
(R = R,,g", N\ = cosmological constant)
Einstein equation is second rank, non-linear, 10-simultaneous, partial di erential equation.

It is di cult to get its exact solution without symmetry, In particular dynamical solutions
are di cult to get. Then we need to use numerical simulation of Einstein equation.
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1 Introduction (2) Most traditional formulation: ADM formulation

We have to decompose 4 dimensional Einstein equation into 1 dimension of time and 3
dimensions of space to do numerical simulation. The following is the ADM formulation, which
IS the most traditional one of spacetime decomposition of Einstein equation.

ds* = —a?dt* + ~;(dx’ + B'dt)(dx? + (3 dt) (2,7 =1,2,3)

« @ lapse, ' : shift, ~;; : spatial metric decomposition of metric
Kij = —5 (Orvij — ViB; — V5 extrinsic curvature
H:=R®+ K? - K,;K7 —16rp—2A=0  Hamiltonian constraint equation
M, = VjKjZ- —V,K —-8rnJ;, =0 Momentum constraint equation
Ovij = —2aK;; + V,;8; + V5 evolution equation 1
8tKij = CYRS)) + OéKKij — ZCVKikKkj — Vivjoz +(Vzﬁk)Kk] + (V]ﬁk)K]% + ﬁkkaZ]
—al\y;; — 8rasS;; — dray;(p — SY) evolution equation 2

To do numerical simulation, we first solve the constraint equations on initial spatial surface.
And, we decide the gauge function (lapse and shift), and evolve to next spatial surface by
using evolution equations. Then the constraint equations are preserved during evolution
analytically. But numerically, they increase a little and diverge finally. This is the big
problem.



1 Introduction (3) Various fomulations: Ashtekar, BSSN

Ashtekar’s formulation (Phys.Rev.Lett. 57, 2244 (1986))

Bi, A2 (i=1,2,3), (a=(1),(2),(3),SO(3) index)
N,N', Aj

Ff = 0;A3 — 0;A7 — i€ ALAS)

%e“b EIEJF: — Ndet E =0, —F4EI =0, D;E =0,
0,Ei = —iD,(e NEIEi) + 2D,(NVED) + iAbe

OpA? = —ie® NE] g+ NIFf, + D, Ag

BSSN formulation (Pys.Rev.D 52, 5428 (1995))
‘70771]7[( Azg; rz

canonical pair (densitized triad, Senn connection)
gauge functions (densitized lapse, shift, triad lapse)

curvature

constraint equations 1,2,3
evolution equation 1
evolution equation 2

dynamical variables

RBSN + K2 — K ;KY —2N =0, D;K7; — D;K =0, constraint equations 1,2

ri— I_ijqjk =0, det(7;;) =1, Aw'y” =0
Opp = —(1/6)aK + (1/6)5'(0ip) + (0:3").

constraint equations 3,4,5
evolution equation 1

0ij = —ZO&Z@'J‘ + % (9;6%) + 31(9:6%) — (2/3)7:;(9x %) + B*(07i5), evolution equation 2

8K = —D'D;a + oA ; A + (1/3)aK? + (9, K),

evolution equation 3

0 Ay = —e *(D;D;)TF + e a(RESSNYTF + a K A;; — 2aAy,AF; + - - evolution equation 4

OPTT = —2(9,0) A1 + 2 (T3, AW — (2/3)77(0,K) +

Other various formulations can be thought by

6A4(0,0)) + - -- evolution equation 5

arrangement of variables and by adding con-

straint terms on evolution equations (adjustment).
Which formulation is suitable for a simulation of Einstein equation? (formulation problem)
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2 Hyperbolic reduction

We apply a formulation which reveals 1st order hyperbolicity. It is expected that wellposed
behavior, better boundary treatment (by information of propagation speed) and known nu-
merical techniques in Newtonian dynamics. There are many try of hyperbolic reductions of
Einstein equation. | give an example from GY-HS Phys. Rev. Lett. 82(1999), 263-266

e Ashtekar formulation is weakly hyperbolic (principal matrix has real spectrum) one.

e strongly hyperbolic (principal matrix is real diagonalizable) when A% = AN, metric
reality and adjusting (Nié,, + iNew, E)CE to 8,5 , e 2NECy — ie 2NeEy; BICy; to 9,A

e symmetric hyperbolic (principal matrix is Hermite) when A% = AN’ ;N = 0, triad
reality and above adjustment

(al) (al)
plus-mode wave propagation plus-mode wave propagation
0010 ——+— . 000 —— 1
| weakly hyp. || I weakly hyp. ]
--------- strongly hyp. || | --------- symmetric hyp. | |

0.008 N 0.008 |

H
H

0.006 0.006

L2 norm of C A
L2 norm of C A

0.004 0.004

- [ .:' ,‘l l.:- .‘:| - - . v -~ -
0.002 - : — 0.002 - .

0_0007 ““““““““““““““ | 0000 Lo v b b e e e e e e e
0.0 2.0 4.0 6.0 8.0 10.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

time time

Are hyperbolic formulations actually helpful in numerical simulations?
Unfortunately, we do not have conclusive answer to it yet.



2 Hyperbolic reduction

Theoretical issues

e Well-posedness of non-linear hyperbolic formulations is obtained only locally in time
domain.

e Energy inequality indicates exponential boundedness of norm which does not forbid
divergence

e The discussion of hyperbolicity only uses characteristic part of evolution equations, and
Ignore the non-characteristic part.

Numerical issues

e Earlier numerical comparisons reported the advantages of hyperbolic formulations, but
they were against to the standard ADM formulation. [Cornell-1llinois, NCSA, ...]

e If the gauge functions are evolved with hyperbolic equations, then their finite propagation
speeds may cause a pathological shock formation [Alcubierre].

e Some group [HS-GY, Hern] reported no drastic numerical di erences between three hy-
perbolic levels, while other group [Calabresse,Cornell-Caltech] reported that strongly
hyperbolic is good and weakly hyperbolic is bad. Of course, these statements only cast
on a particular formulations and models to apply.

Proposed symmetric hyperbolic systems were not always the best one for numerics.



3 Constraint propagation analysis

For time evolution systems with constraints in general
ou® = f(u® ou®,d0u”) evolution equations
c* = C*u, o0u’,00u”) ~ 0 constraints
If constraints are first class, constraint propagation takes this form
AgCY + A10C" + Ay00C* + - .- constraint propagation

0,C*

Analytically, constraints are satisfied during evolution. But numerically, does not. By Fourier
transformation, we rewrite constraint propagation with each modes, which is ODE.

5,0% = AC + A,GE)CY + Ay(iK)GR)CX + - -
(Ao + Ay (ik) + Ay(ik)(ik) +---) C*  constraint propagation 2

M
constraint propagation matrix

we substitute background metric into M — M,
CAF := Eigenvalues M,, Constraint Amplification Factors (CAF)

By evaluating CAFs before simulations, we will be able to predict constraint violation in
numerical evolution.



A Classification of Constraint Propagations (cont.)

0;C = \C' = C = C(0) exp(At)

(C1) Asymptotically constrained : (Violation of constraints converges to zero.)
~ all the real part of CAFs are negative

(C2) Asymptotically bounded : (Violation of constraints is bounded at a certain value.)
~ all the real part of CAF's are non-positive

(C?)) Diverge: (At least one constraint will diverge.)
~ there exists CAF with positive real part



A Classification of Constraint Propagations (cont.)
0,C = MC, CAF = Eigenvalues(M)

(C1) Asymptotically constrained : (Violation of constraints decays.)
< all the real part of CAF's are negative

(C2) Asymptotically bounded : (Violation of constraints is bounded at a certain value.)
& all the real part of CAF's are non-positive

and Jordan matrices for eigenvalues with zero real part are diagonal
< all the real part CAF's are non-positive and M is diagonalizable

(C3) Diverge: (At least one constraint will diverge.)
< there exists CAF with positive real part
or there exists non diagonal Jordan matrix for eigenvalues with zero real part



A Classification of Constraint Propagations (cont.)
0,C = MC, CAF = Eigenvalues(M)

(C1) Asymptotically constrained : (Violation of constraints decays.)
< all the real part of CAF's are negative

(C2) Asymptotically bounded : (Violation of constraints is bounded at a certain value.)
& all the real part of CAF's are non-positive

and Jordan matrices for eigenvalues with zero real part are diagonal
< all the real part CAF's are non-positive and M is diagonalizable

(C3) Diverge: (At least one constraint will diverge.)
< there exists CAF with positive real part
or there exists non diagonal Jordan matrix for eigenvalues with zero real part

Each eigenvalue evaluation.
Real part: Negative is better than zero and positive is worst.
Imaginary part: non-zero is better than zero for avoiding degeneracy.




Examplel: Maxwell equation

OE = —ceijl 0B, ,B' = ceijl O, E’
Cp = 0,FE'~0,, Cp:=09,B ~0,

0,Cg = 0, 0.Cp=0

CAF = (0,0) (asymptotically bounded)

Example 2: ADM equation

Ovij = —2aK;+ VB + V05,
0K, = aRY +aKK;; — 20K K", — V,Via+ (V8" Ky, + (V65 Ky + 8V K5,
H = R® 4+ K? - K;K",
M, = V;K’; — VK,
OMH = F(O7H) = 207" (M) + 20K H + a(Bryma) (27™'™ = ™" )M — 45" (D) M,
OM; = —(1/2)a(0H) + B (9M;) + aKM; — (Bic) H — B (0yumr) M + (8:8)7™ M.
CAF = (0,0,+£v—k2) (in Minkowskii background) (asymptotically bounded)



Example 3: BSSN

0Py =

0P =

OF K
0f Aj

oPT

HBSSN
MBSSN
gi

A

S =

CAF

—(1/@0‘[( +(1/6)3'(0ip) + (9,3,

—20Aij + Vi (0;8%) + Vi (0i8") — (2/3)7:5(0kB") + B" (1),

—D'Dia + aAj; A7 + (1/3)aK? + 3'(0,K),

—6_4¢(D¢Dj@)TF + 6_49005(R555N)TF + OéKzzlij — QQAikAkj + (({zﬁk)fikj + (8]ﬁk)zzlkz
—(2/3)(0xB") Ayj + B (01 Ay5),

—2(0j0) AV + 2a(T, AY — (2/3)77(0;K) + 6 A7 (0;0)) — 0;(8"(8:77) — 4™ (03")
—7M(OkB7) + (2/3)77 (k"))

RBSSN | 2 _ K K,

VK’ — VK
[ — 47T,
Ay

y—1

(0(x3),+v—k?(3 pairs)) (in Minkowskii background) (asymptotically bounded)



4 adjusted system

Add constraint terms to evolution equations (adjust)

ou® = f(u® ou”,00u”) + F(C*,0C", 00C")
constraint propagation changes depending on them, too

o,CY = AyC*+ A 0C" + A00C + - - - + ByC" + B10C" + B,0oC” + - -
CAF changes depending on them, too

We should adjust so that CAFs improve.

Advantage of adjusted system
1. Available even if the base system is not a symmetric hyperbolic.
2. Keep the number of the variables same with the original system.

3. Unified understanding for formulation problem is possible using the notions of adjustment
and CAF



Example 1: adjusted Maxwell equations

o E; = ez-j’fajBk + k0;CE, O:B; = —eij’“ajEk + k0;Cp evolution equations

Cg=divE =0, Cg=divB =0 constraint equations
Ce\ _ [(—klk?2 0 ) <5E> . .
Oy ( CB> = ( 0 _alii2 )\ G, constraint propagation

CAF = (—«lk[?, —x|k|?)

CAF is negative when x > 0

0.00 iy
i i
i
-0.50 : -
— |
<" CF O ]
e -1.00 B — — — —
o] < ! ]
(Sl 7\‘\\ |I x=0.0
A N~ i
o 150 - el , -
83_ I ~ T T e k=+0.1
2 K= +03 e T
200 - : T — o]
- k=+ 0.2
-2.50 i I I I | I I I | I I I | I I I | I I I
0.0 2.0 4.0 6.0 8.0 10.0
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Real / Imaginary parts of Eigenvalues (AF)

Example 2: adjusted ADM formulations (Detweiler type adjustment )

Oryij = —2aKyj + Vi3 + V6 — rpa’y/H

0Ky = aRY + aKKjj — 2aK K*; — V;Va + (Vi) Ky + (V85 Ky + 5V, K,
+/1L043(Kij — (1/3)Kij)H + HL@3(38(1'045§€) - azoé%'ﬂkl)/\/lk
+/€L0435@5§) — (1/3)%7"YViM,

In case of Minkowskii background, CAF becomes

CAF = (—(L/2)rr|K], —(1/2)mz Rl —(4/3)r || £ [F]y/~1 + (4/9)3 [E]2))

In case of Schwarzschild background, CAF becomes

(a) (b)

no adjustments (standard ADM) Detweiler type, k = + 1/2 Detweiler type, k = - 1/2
1 I I E | E: 1 ‘
00080000080 < 00-6-0 0-6:0-0°6 01000 00 00T <
0000-@-@@-@-@-& - . v O
o e 0 %} _@_0_00_6_00_9.00@'0
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= | E
0.5 O 05 o 7 o
© -&0 :
g ) '9‘0'@-&0. - : g
: -00-@‘-00@-&0@-&0@- =
6 ] a ) 00-@-0-0-@
0] [0) | 0 0000-6.6.6.0.6-6-0-006-06
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Example 2: adjusted ADM formulations (numerical test)
1. original ADM (9,K;; = original term + av;;H) CAF=(0,0,0,0) (diverge)
2. standard ADM (no adjust) CAF = (0,0, +/—|k[2) = (0,0, Sm, Sm)

3. simplified Detweiler type (9;v;; = original term — ra~;;H)
CAF = (0,0, —x|E|? & |K|\/—1+ x[E|?) = (0,0, —, —)

4. Detweiler type 0,v;; = original term — xkpa3v;;H
0, Ky = original term+r o’ (K —(1/3) Kvij)H+ ke’ (30uad) — iy v )M+ kra?of;0l — (1/3)7i v ) VM,
CAF = (—(1/2)rL|E|, —(1/2)r |k, —(4/3)rr k] £ [K]y/ ~1 + (4/9)r3[K]2) = (—, —, —, )

ADM and its adjusted versions
-- Teukolsky wave evolution --

riginal AD

Standard ADM

djusted ADM (SimpDet)
Adjusted ADM (Det)
105 M o

0 50 100 150 200 250 300
time

L2 norm of Hamiltonian constraint
5




Constraints in BSSN system
The normal Hamiltonian and momentum constraints

HBSSN _ RBSSN | 2 Kinij’
MBSSN _ (ADM.
Additionally, we regard the following three as the constraints:
gi _ fwi _ijfwji_k,
A = AyyY,
S =yYy-—1,

Adjustments in evolution equations

02d = 02 + (1/6)aA — (1/12)~—1(aJ B,
0PYij = 0fVij — (2/3)ayij A + (1/3)y (0kS)B"Vij, _
0K = 9fK — (2/3)aK A — oM 1 oe **(D; 3,

+ae **i(05)G") — (1/3)ae*y;;(0kG")

aFAij = af‘Aij + ((1/3)(1?in — (2/3)GAij)A + ((1/2)ae*4¢(akvij) — (1/6)ae*4¢\7ij\7*1(0k8))g"

A~~~ I/~
co 1 O
 —

(9)

OPT = BfT" — ((2/3)(Q50y"" + (2/3)a(;y") + (1/3)ayly 1(8;S) — ay (8;0))A — (2/3)ay’(9;.A)
+20y M; — (172)(0B VIV H(058) + (1/6)(0;B )y Y ~H(0kS) + (1/3) (0B )V Y (05S)
+(5/6)By 2y (0kS)(0;S) + (172)B*y(0ky)(95S) + (1/3)B*yH(0; ") (0kS).

(10)




Effect of adjustments

No. Constraints (number of components) diag? | Constr. Amp. Factors
H(1) M;3) G @3 A1) SO in Minkowskii background
0. standard ADM use use - - - yes | (0,0,S, )
1.  BSSN no adjustment use use use use use yes |(0,0,0,0,0,0,0,S,<)
2. the BSSN uset-adj use+adj use+adj usetadj use+adj| no |(0,0,0,%,S,5,3, S, Q)
3. no & adjustment use+adj use+adj use+adj use+ad] use no | no difference in flat background
4.  no A adjustment use+adj use+adj use4-ad] use use+adj || no |(0,0,0,9,%,9,5, S, 9)
5. no G’ adjustment uset+adj usetadj use  usetadj usetadj| no |(0,0,0,0, 0 O 0,3, 3)
6. no M, adjustment use+adj use usetadj use+adj use+adj| no |(0,0,0,0,0,0,0, 3%) Growing modes
7.  no H adjustment use  use+adj usetadj usetadj use+adj| no |(0,0,0,%,3, 5,3, S Q)
8. ignoreG', A, S use+adj use+ad] - - - no |(0,0,0,0)
9. ignore G', A use+adj use+tadj use+ad] - - ves | (0,9,9,9,9,S,9)
10. ignore G’ use+adj use+tadj - usetadj use+adj|| no |(0,0,0,0,0,0)
11. ignore A use+adj use+adj use+ad] - usetadj | yes |(0,0,%,%,9, 5,5, 9)
12. ignore S use+adj use+adj use+adj use+ad] - yes | (0,0,93,%,9, S, S, Q)




New Proposals :: Improved (adjusted) BSSN systems

TRS breaking adjustments

In order to break time reversal symmetry (TRS) of the evolution egs, to adjust 0;®,0¢Vij,0tI" using
S,G', or to adjust 0+K, 0:Ajj using A.

019 = 0250 + Ky OHBS + KegODKGX + Kys10S + Kys5:0DID; S

OtYij = O2°Yij + Kyn@VijH®® + Kyg10Yij DkG* + Kyg20¥iiDj) G* + Kys10ij S + Kys-aDiD; S
K = 055K + ki ay?¥(Dj M) + Ky 1,04 + Ky 1,aDID; A

0A; = O Aij + KanVij (D M) + Karea(DiMy)) + Ky 1,0Vij A + Ky 1,0DiD; A
ol = 02°T" + Ky, aD"HB® + Kp,0G" + K;,0DID;G' + K;,0D'D;G) + Ky saD'HBS

or in the flat background

PPy — 1k THBS + Koa0 16X + Kos1MS + Ky520051S

GEADJ“)VU = ‘|—K\7’H6ij(1>HBS + Kvgléijak(lgk + (1/2)Kyg2(aj(1?i + ai<1?j) + Kv815ij(1)5 + KVSQGiaj(l)S
OFDIK = i WMy + ke A+ Ky 1,050 ) )
OfPIAG = +kan8ij Ok M + (1/2)Kania(0iMj + 5 M) + Ky 1,8 A + K, 1,0i0;.A

af‘DJ(lfi = +KfHai<1>7'(BS + ngl(lbi + KfQQOj aj(lbi -+ nggaiéj(lbj + Kf56i<1)3



Constraint Amplification Factors with each adjustment

adjustment CAFs diag? effect of the adjustment

Ot(p KoH aH (O, 0, :|:\/—k2(>l<3), 8K¢Hk2) no KoH < 0 makes 1 Neg.
0,0 KygaD.G" (0,0, £v/—k2(*2), long expressions) yes | Kyg < 0 makes 2 Neg. 1 Pos.
01Yij KspOyyH (0,0, v/ —k2(x3), (3/2)kspk?) yes | Kgp <0 makes 1 Neg. Case (B)
0+Yi; Ksgi O(VijDkgk (0,0, £v/—k?(%2), long expressions) yes | Kygi = 0 makes 1 Neg.

L a (0,0, (174)k?Ksgy %= \/k2(—1 + k2Ks62/16) (+2), -
0:Yi; Kyg2 0Y;;D;G long expressions) yes | Kyga < 0 makes 6 Neg. 1 Pos. Case (E1)
atvij K5ys1 GVNU‘? (O, 0, £v —kz(*g), 3K:y51) no Kyst < 0 makes 1 Neg
atvij Kys2 GDZ'D]'S (0, 0, £v —kz(*g), —K§32k2) no K582 > () makes 1 Neg

TR 0,0,0, v/ —k?(x2)

K k(D (00,0, j < kes 2 Neg.
0 ) K 0y ( NJMk) (1/3)K e mk? £ (1/3)\/k2(—9 +K2K3 ) no | Kgay < 0 makes 2 Neg
0:A;; Kar Vi (DFMy) | (0,0, v/ —k2(%3), —Kap11K?) yes | Kapm1 => 0 makes 1 Neg.

~ ~ (0,0, —K2K qpn0/4 + \/k2(—1 + K2K g 012/ 16) (52) |
0:Aij Kare (D M;)) long expressions) yes | Kapo = 0 makes 7 Neg Case (D)
atAij K441 GV@jA (O 0, :|:\/—k2(>l<3) 3KAA1) yes Kagr < 0 makes 1 Neg.
0:Ai; Kaa20D;D;A (0,0, v/ —k2(x3), —K142k?) yes | Kygo => 0 makes 1 Neg.
0,I" Kp, 0D'H (0,0, v/ —k2(x3), —K442K?) no | Kpy, > 0 makes 1 Neg.
0" Kpg, OG (0,0, (1/2)Krg1 K2+ K2, (x2)  long.) | yes | Kpg, <0 makes 6 Neg. 1 Pos. Case (E2)
01" Kpg,aD'D;G’ (0,0, —(1/2)Kgy & |/ —K* + KZ (%2) , long.) | yes | Kpgy > 0 makes 2 Neg. 1 Pos.
0" Kpgy0D'D;GI (0,0, =(1/2)Kpgq £ /—K* + K%gg(*Q) , long.) | yes | Kpgy > 0 makes 2 Neg. 1 Pos.

Yoneda-HS, PRD66 (2002) 124003



5 Summary

e Towards a stable and accurate numerical relativity, which formulation is suitable?
e Hyperbolic reduction is one of strategy but not perfect.
e Constraint propagation analysis gives us an index of stability.

e If we adjust so that CAFs improve, numerical error is decreased.

Future
e dynamical control of adjustment
e constraint propagation analysis without substitution of background

e apply constraint propagation analysis to the study of stability of gauge conditions and
coordinate

e apply some technique of hydro simulation to numerical relativity



FAQ

Q1 Why does CAFs=zero indicate the divergence of the system?

] ] C1 _ O 1 C1
It happens. See this simple example. 9, (@) = (0 O) (@) :

Though the eigenvalues are all zero, but ¢, =constant, ¢; is constantly increasing.

Q2 Why do we need to substitute the background metric for evaluating CAFs?
There are two reasons. First reason is because it is too complicated without substitution.
Second reason Is because a sign of eigenvalue does not often clear without substitution.

Q3 Does the prior evaluation by CAFs predict the numerical stability perfectly?
Unfortunately No. Because it i1s an approximate evaluation, we cannot prevent the
numerical divergence of error when it appears.

Q4 What is the greatest advantage of this proposal of CAFs ?
CAFs enables us to evaluate the system’s stability before we start a numerical simulation.
Positive CAFs surely indicate the divergence of the simulation. Negative CAFs surely
Indicate that constraint manifold is the attractor.

Q5 Does it get closer to a true solution really?
When there is a exact solution, | can compare numerical solution with it and it has been
checked by some examples. When there is not a exact solution, I can only check whether
evolution and constraint always satisfy enough.





